
LA-UR-18-29608
Approved for public release; distribution is unlimited.

Title: Learning Memento archive routing with Character-based Artificial
Neural Networks

Author(s): Powell, James Estes Jr.

Intended for: Report
Web

Issued: 2018-10-10

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Learning Memento archive routing with

Character-based Artificial Neural Networks

James Powell

November, 2017

Abstract

This white paper describes a series of tests that were performed to
determine if a neural network could learn patterns from a service that
maintains a cache of routing decisions for the discovery of version infor-
mation for discrete web-at-large URLs. Labeled training data was derived
from a log file that records the by-archive availability of Memento avail-
ability for a given URL. Training data sets were generated from this log
file on a by-archive basis (thus making it a binary classification problem).
Each training data set consisted of equal numbers of hit and miss URLs,
selected at random. The URLs were converted to a normalized numeric
representation where each integer in a URL training vector represents a
character in that URL. The corresponding label indicates whether or not
Mementos were available for that URL in the selected archive. The train-
ing data matrix and the label vector became input to a neural network.
A number of neural network architectures and network hyperparameters
were explored, however the log entries themselves were used as-is, without
any feature engineering, beyond the aforementioned normalization.

The paper is divided into five major sections. The first section de-
scribes the general conceptual model underlying artificial neural networks.
The next section steps through the execution of a very simple neural net-
work, implemented in python. Following that, the paper introduces two
common network architectures, multi-layer perceptrons and convolutional
neural networks. Next is an expansion on the problem statement, followed
by a characterization of the test data set and details about how test data
is transformed into labeled training data. This section introduces the
concept of hyperparameters which are influenced by various aspects of
the training data. The results section presents details about the final
versions of the network architectures which were tested, and the results
of those tests. The paper concludes with a preliminary evaluation of the
performance of a learned model, and suggests future work. A process-
ing pipeline that resulted from this work appears in table 8. Additional
results are included in the appendices.

1

Overview of Neural Networks

Artificial Neural Networks (ANNs), or neural networks, are a computational
form of biomimicry. In living organisms that possess a nervous system, neurons
are the information signaling building blocks which handle sensory input. The
primary role of neurons is to receive and transmit signals to one another under
certain conditions. A neuron sums the inputs it receives, and forwards the input
if a certain threshold value is reached. When an organism feels pain, nerves local
to the source of pain will relay this signal onward. If the sensation is sufficiently
intense, this continues until the signal reaches the brain, where it may cause a
reaction and/or the formation or reinforcement of a memory. Artificial neural
networks approximate this process.

Instead of sensory input, ANNs are exposed to vectors of data. An ANN can
learn from labeled or unlabeled data. An example analogous to how ANNs learn
from labeled data is language learning. For this task, one might use flash cards,
which combine an image of an object with the corresponding text representing
the word for that image. When viewing a card, the images are turned into
impulses by the retina, passed along the optic nerve, and ultimately to the
brain. Over time the association between word and its visual representation
becomes stronger. Artificial neural networks learn in a similar fashion. The
network is exposed to training data and corresponding labels repeatedly. As
this happens, a set of weights, initialized to random values, are progressively
tuned so that they model the relationships between training data and labels.
The resulting model can be then used to identify similar data and make label
predictions about it. Prediction from a model is similar to how a language
learner might guess the meaning of a new word they had not previously seen,
based on the fact that it shares a root with a word they have previously learned.

Neural networks are arranged as layers of neurons. Each neuron receives
some input data and performs some mathematical operations on that input.
Every neuron in a given layer is computationally identical to all others in that
layer. Neurons within a layer are not connected to one another, but they are
connected to neurons in other layers. Those other layers contain neurons that
may use different operations to process the input they receive. Often all neurons
between two layers are completely connected but there are network architectures
where this is the exception rather than the rule. ANNs are data-agnostic. The
network has no prior information about the data to which they will be exposed.
When a neural network has many layers, it is classified as a deep network.
The next section is a look under the hood of a very simple neural network
implementation.

Simple neural network walk through

The best way to understand neural networks is to examine the implementation
and output of a simple example. The blog ’Trask’ by iamtrask published a bare-
bones neural network (below) that performs binary classification with labeled

2

data. It uses just nine lines of python code. The only external library it relies
on is numpy, a math library for python. Neural networks are usually built
using specialized libraries, such as TensorFlow and Keras for example, but these
libraries abstract away some of what is actually happening. Trasks stripped
down example explicitly exposes every step. The input data is a matrix of
numbers that represent the training data (X), and a corresponding vector of
class labels (y). A single layer of neurons is exposed to this data. To borrow
again from the biological analog, this layer is where signals get aggregated and
compared to a threshold before they are adjusted and relayed onward (in this
case, back through the network). Although it is a toy example, it does illustrate
many of the basic concepts of neural networks.

iamtrask numpy neural network example, in its entirety, with comments
added for clarity:

X = np.array([[0,0,0,1],[0,0,1,1],

[0,1,1,1],[1,0,0,0]]) # 1. Training data, matrix X

y = np.array([[0,0,1,1]]).T # 2. Labels for training data, vector y

syn0 = 2*np.random.random((4,1)) - 1 # 3. Initialize random weights, syn0

for j in xrange(10000): # 4. An iteration: feedforward,

apply weights to each training

vector in training matrix X

l1 = 1/(1+np.exp(-(np.dot(X,syn0)))) # 5. Use sigmoid function to predict a label

for each vector in X where x in e^-x

is dot product of each row in X

combined with the weights in syn0

l1_error = y - l1 # 6. Calculate error: labels - predictions

l1_delta = l1_error * (l1*(1-l1)) # 7. Use partial derivative of l1 multiplied

by l1_delta to determine if predicted label

is moving toward or away from y labels

syn0 += X.T.dot(l1_delta) # 8. Now adjust the weights

print l1 # 9. print predictions for this iteration

Repeat from line 4 onward until j=10000

The input training data:

X =

0 0 0 1
0 0 1 1
0 1 1 1
1 0 0 0

The input classes vector (row in X ”is a class of” entry in y):

y =

0
0
1
1

Table 1 shows the output from each step performed by the network. In the

left column, the first entry is a set of random weights. These were generated
by the network when it initialized itself for the first time. The weight vector is

3

combined with each of the training vectors by computing their dot product. This
value represents the combination of the direction and magnitude of a training
vector with the weights vector. Calculating the dot product of these values is
the first step performed by each neuron. The dot product is an input value to a
function associated with the node. It is this function that generates a prediction
based on these inputs. This function is referred an activation function. The
activation functions associated with neural network nodes and the edges between
layers of nodes are the defining characteristics of neural networks. This example
uses the sigmoid (also known as the logistic sigmoid) function as its activation
function. A plot of the sigmoid function has a characteristic sideways S shape
(figure 1). For any f(x), the result will fall somewhere on the sigmoid curve. The
sigmoid function tends to output values that are close to 0 or 1. This is why
it works well as an activation function for binary classification. The results of
these operations produce a set of predictions for a label, given a row in X. Once
each training vector is combined with the weights vector, these values are used
as value x for the sigmoid function. This is an example of how a neural network
uses an activation function to learn nonlinear patterns in labeled training data.

f(x) =
1

1 + e−x

First iteration, random weights Weights after 1000 iterations

Table 1: Sigmoid plot of weights

The right column of table 1 illustrates the next steps. These steps evaluate
the predictions for their ability to predict a class in vector y. The difference
between the partial derivative of a predicted value and the difference between
a label and the predicted value (error) is called the error delta. The error delta
is a vector of values used to update the weights. This process of combining the
training data vectors with the weights vector, generating predictions, evaluat-
ing the predictions in relation to the assigned labels, and then readjusting the

4

weights is how the network gradually learns an association between a vector of
input data and its assigned label. Examples of predictions at various iterations
are provided in table 2.

initial ran-
dom weights

−0.16595599
0.44064899
−0.99977125
−0.39533485

 error

−0.40243371
−0.19859385
0.72201066
0.54139404

dot product
X · weights

−0.39333485
−1.39510611
−9.95445712
−0.16595599

 error delta

−0.09677759
−0.03160707
0.14491567
0.13442085

sigmoid
(guess)

0.24048082
0.15915433
0.20071127
0.24828653

 updated
weights

−0.03153514
0.58556466
−0.88646265
−0.37880384

Table 2: Results of one iteration through the network

0th iteration guess

0.40243371
0.19859385
0.27798934
0.45860596

 100th
iteration
guess

0.09428112
0.10927185
0.88435938
0.91770372

results of 10,000 iterations

0.00727093
0.01015224
0.98981649
0.99282528

 target
classes to
guess

0
0
1
1

Table 3: Progress at various iterations

5

Character-based Neural Networks

Neural networks are used for a variety of text processing tasks, including senti-
ment analysis, classification, summarization, topic extraction, and even artificial
text generation. There are two ways to present textual data to neural networks,
as words or as characters. In either case, the data is transformed into a matrix of
numbers before it is presented to the network. Of the two approaches, utilizing
characters as features requires less data preparation. Basically a dictionary of
discrete characters is created from the text, and string values are transformed
into a vector of indices into this dictionary. The normalized data vectors, along
with the training labels, becomes the input to a neural network.

A multi-layer perceptron (MLP) network uses multiple layers to learn rela-
tionships in a training data set. Like the python example above, it initializes
itself with random weights, and accepts as input a set of vectors that represent
training data, together with their corresponding labels. It includes additional
layers, referred to as hidden layers, which can improve the networks ability to
learn. Hidden layers can have different numbers of nodes and use different tech-
niques for processing the data than the first layer. For binary classification
tasks, the final layer will only contain one node. That node will utilize an ac-
tivation function that reduces the final output to value of 1 or 0. Sigmoid is
usually used as the activation function for this layer. Much effort is devoted to
fine tuning aspects of the hidden layers. Many factors affect the design of these
layers, and so sometimes they are determined experimentally.

The term hyperparameters refers to various changeable aspects of a neural
network architecture. These include how much training data is presented to a
given node in the first layer, how many iterations the network revisits the data,
and other characteristics such as the way in which loss (error) is evaluated, the
number of nodes per layer, and the type of activation functions used by discrete
layers. For neural networks that treat individual characters as features, some
important hyperparameter values to consider are length of document, number
of distinct characters in training data, and batch size.

Convolutional neural networks (CNNs) are more complex than MLP net-
works. They have been most commonly applied to image modeling and object
recognition tasks. There are a couple of reasons why they are especially well
suited to this task. CNNs can process multi-dimensional data effectively. Im-
ages typically have additional dimensions such as location, color, and brightness
depending on the source files. CNNs break up the input data into smaller re-
gions, using a fixed size window that it can move across the data. This is called
a kernel filter. The process of moving the kernel filter over input data is called
convolution. Convolution over image data is especially good at detecting dis-
tinctive features, such as edges and outlines. CNNs also perform better with
many layers because initial layers can detect small features and subsequent lay-
ers (pooling layers and/or layers with different kernel sizes and number of nodes)
can aggregate these features. CNN models can learn to classify images, they can
be used to recognize images of characters from a page scan, objects in a photo-
graph, or faces captured by a security camera. It turns out that convolutional

6

neural networks are also good at learning over character vector representations
of textual data.

In the spring of 2017, the Textrodeo team applied a number of machine learn-
ing algorithms and neural network architectures to the problem of identifying
email spam. This is a binary classification problem so labeled data consists of
a training set of the text of spam and non-spam emails, together with a label
indicating their class. Character CNNs were among the top performers of the
algorithms tested (see figure 2 and 3). They perform well using the raw text as
training data. This was the inspiration for applying MLPs and CNNs to Me-
mento aggregator log file data, since it could be framed as a binary classification
problem. The remainder of this white paper describes how these neural network
architectures were constructed and tested with aggregator cache data, and the
results produced by these networks.

Figure 1: Comparison of accuracy achieved by ML and NNs on spam classification
problem

Figure 2: Comparison of false positive rates of classical ML algorithms and NNs for
spam classification

7

Time Travel for the Web

Web archives store snapshots of Web content collected at a particular moment
in time. Sometimes archiving happens automatically, while other times it is
triggered by an event or a user. The archive stores each object together with
the URL used to reference it, and a timestamp. An item in a Web archive can
be retrieved by constructing a URL that includes this time component. The
archive will respond with the object that was archived at that time, or the last
version of the object that was archived prior to the specified time. Individual
web archives are searchable, and if the content requested is a Web page, the
URLs within that Web page are rewritten so that a complete approximation of
that Web page is returned for the timestamp.

There is no one archive that maintains versions of all content on the Web.
The oldest Web archive service is the Internet Archive at https://web.archive.
org/web/, so it tends to be the most reliable and comprehensive source for snap-
shots of Web content. Different organizations have launched their own Web
archives over time, with different coverage goals. Newer archives obviously do
not cover time periods before their existence, but since they may have different
coverage of Web-at-large content, they may over time become better sources for
requests for more recent content. In short, Web archives have grown in numbers
and coverage organically, so today what can be found of Web content from the
past is a patchwork of digital objects. It is a situation that is improving con-
stantly. But meanwhile providing an optimal user experience for accessing Web
archive content has required the development of a new protocol (Memento) and
services that use that protocol.

The Memento protocol is published as an RFC with the IETF. The RFC is
entitled ”HTTP Framework for Time-Based Access to Resource States – Me-
mento.” The standard was built on existing capabilities of the HTTP Web
protocol. It allows a resource to provide information about other versions of it-
self that might exist (Mementos), and the source for those versions (a Memento
Timegate. The temporal Web search engine Time Travel for the Web searches
collections of Mementos for Web resources. Since there are multiple archives
that may contains Mementos for a resource, this is a federated search.

Heres a portion of the response header of a request to archive.is for past
versions of a website called www.dannydorling.org:

<http://www.dannydorling.org/>; rel="original", \\

<http://archive.is/timegate/http://www.dannydorling.org/>; rel="timegate",

<http://archive.is/timemap/http://www.dannydorling.org/>; rel="timemap";

type="application/link-format";

from="Sun, 14 Apr 2013 14:56:09 GMT"; until="Sun, 14 Apr 2013 14:56:09 GMT",

<http://archive.is/20130414145609/http://www.dannydorling.org/>;

rel="first last memento";

datetime="Sun, 14 Apr 2013 14:56:09 GMT"

Memento-Datetime: Sun, 14 Apr 2013 14:56:09 GMT

This example shows that archive.is does indeed have previous versions of the
specified website and it provides some additional information about what it has.

8

https://web.archive.org/web/
https://web.archive.org/web/

As with many archived URLs, other archives also have previous versions of this
website. Thus finding all the possible sources for versions of this web site is a
federated search task. The Memento aggregator sits between Memento-based
services and the archives that support it. It maintains information about which
archives have version information for a given URL, but it tries to strike a balance
between optimizing federated archive queries but not maintaining a complete
list of each archives holdings, which is not practical. The aggregator maintains a
cache of recently queried items to improve response time. The aggregator log is
a good indicator of which archives are able to respond to Memento requests for
which URLs. But a cache obviously favors more frequently and more recently
requested items. Finding other strategies to allow the aggregator to decide
which archives to target can improve the performance of the Aggregator. Some
strategies that have been employed including heuristics that leverage domain
names, and the application of various machine learning algorithms. Following
in the footsteps of these optimization efforts, this white paper explores the
possibility of using various types of ANNs together with a sample of aggregator
log file entries to learn models that could optimize aggregator routing.

Using character-based neural networks to learn
to route Memento aggregator requests

The test dataset consisted of data from Memento aggregator logs. Subsets of
this data were used as labeled training data to test the ability of various neural
network architectures to perform binary classification tasks. There were 193,288
distinct URLs each of which is accompanied by a comma separated list of archive
ids. The occurrence of an archive id with a URL indicates that the archive had
information about the URL (a hit). Although a total of 39 distinct archives
were represented in this dataset, only twelve occurred frequently enough to be
included in the tests. Each archive in this set occurred at 1000 times in the log
file. Two other archives which fell below this threshold were used for testing
and development, because they could be processed more quickly. In order to
construct a test set for binary classification, two lists were created one with
hits, and one with misses. Each of these lists were then randomly shuffled using
np.random.shuffle. Following this, an equal number of hit and miss URLs were
inserted into a vector of training examples (X train). A corresponding labels
vector was generated which indicated whether each training example was a hit
(true) or a miss (false) (y train).

Although no feature engineering was required, it was necessary to charac-
terize the data set in order to assign optimal values to some hyperparameters
for the networks. Characters represent the features in the data. The following
characters were identified in the log file:

0123456789

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

9

./_-?=:&,~+()\%$;#*!\’@

One hyperparameter, maximum document length, established a fixed length
for the training examples. URL length ranged from 7 to 908 characters. The
average URL length was 46 characters. The longest URL in the log file was
908 characters. Past lengths of 200, URL length dropped quickly. As figure 5
illustrates, a cut off of 200 might also be reasonable. To ensure the network sees
as much data as possible per URL, and since there were some extreme outliers
in terms of length, a maximum length value of 250 was selected. Setting this
value too high results in most of the input URLs being 0-padded, increases
computation time while capturing no additional information. Setting it too low
would almost certainly cause the network to view some URLs as identical.

Here is an example of a URL and how it appears in the training matrix:
www.openbriefing.org/publications/report-and-articles/united-states-caught-off-guard-iran/

[32 32 32 63 24 25 14 23 11 27 18 14 15 18 23 16 63 24 27 16 64 25 30 11 21

18 12 10 29 18 24 23 28 64 27 14 25 24 27 29 66 10 23 13 66 10 27 29 18 12

21 14 28 64 30 23 18 29 14 13 66 28 29 10 29 14 28 66 12 10 30 16 17 29 66

24 15 15 66 16 30 10 27 13 66 18 27 10 23 64 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0]

Figure 3: URL lengths

The input data for neural networks is a matrix of training data, typically
containing one or two dimensional representations of each training data entry,

10

www.openbriefing.org/publications/report-and-articles/united-states-caught-off-guard-iran/

and a corresponding vector of labels. For this project, URL strings were mapped
from UTF-8 encoded characters to sequential integer value vectors (as illustrated
above). These vectors were 0 padded if needed, to ensure that all were the
same length. A corresponding vector of labels, containing either a 1 (hit), or
0 (miss) for each training entry, was included with the training data. One
hot encoding was considered as an alternate encoding, but a literature review
indicated that it was more applicable to multi-label classification problems and
for encoding training data where features were tokenized words rather than
discrete characters.

All neural network models for this project were implemented with the Keras
python library. Keras runs on top of the popular Google TensorFlow library. It
provides a layer of abstraction that corresponds more closely to a given network
architecture. Here is an example of keras code that sets up a three layer CNN
(the embedding is the training data input layer and so is not counted):

model = Sequential()

model.add(Embedding(num_chars, X_train.shape[0], input_length=X_train.shape[1]))

model.add(Conv1D(256, kernel_size=3, input_shape=(MAX_DOCUMENT_LENGTH, num_chars)))

model.add(GlobalAveragePooling1D())

model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary_crossentropy’,

optimizer=’rmsprop’,

metrics=[’accuracy’])

Five different CNN architectures were tested (see table 5), with some vari-
ations in hyperparameters (mainly batch size, and number of nodes per layer).
Three variations on a Char-MLP model were evaluated, and the one which
performed the best was then used in comparisons with the Char-CNNs.

The batch size parameter determines how many samples each node in the
neural network will see from the input. In the python example above, a tech-
nique called full batch processing was used. This approach combines all training
examples with all weights. Returning to the flash card analogy, a batch size
represents a subset of the cards rather than all the cards in the deck. Differ-
ent batch sizes are dictated by input data and network architecture. For some
applications, smaller batch sizes tend to work better because the network has a
finer grained view of the data set. But this comes at the cost of performance.
So identifying an optimal batch size requires some experimentation. An excep-
tionally large batch size, as when all nodes see most or all of the data tend to
lead to poor results. The window each node has into a batch of samples is also
small. Larger values for these parameters can lead to overfitting. Overfitting
occurs when the model too closely matches the input data. The end result is the
network cannot make good predictions when presented with previously unseen
data. Another parameter that requires some trial and error is the number of
epochs, that is, the number of times the network will be presented with the
input data.

Given that some parameters choices could only be arrived at via trial and
error, a wrapper for various CNN architectures was implemented which could

11

Hyperparameter Values Tested Selected

activation function relu,tanh,sigmoid,softplus,sigmoid,linear,softmax,elu relu, sigmoid

batch size small ranges (1 -32) 32

higher fixed and variable value (1000, numSamples/2) 1000 (Char-CNN), numSamples/2 (Char-MLP)

optimizer adam, adagrad, sgd, rmsprop rmsprop

loss binary crossentropy, mean square error, cosine proximity binary crossentropy

kernel filter for smaller layers: 2,3,4,5 2 (Char-CNN A), 3 (Char-CNN B, E)

For stacked layers 9,12,15 9 (Char-CNN C, D)

epochs 10, 20, 50, 100, 300 20

Table 4: List of hyperparameters and values tested.

explore the hyperparameter space. This allowed for testing of many different
combinations of parameters. Epoch values between 5 and 35, at five epoch in-
crements were tested. Batch sizes from 32 to 144 in increments of 16 were tested
for each epoch value. Kernel sizes of 3 and 4 were tested with each epoch and
batch size, since prior experimentation had determined values greater than 4
yielded poorer results. However, for deeper networks, a larger kernel value in
initial layers, followed by a smaller value in later layers also yielded good results.
Other parameters were considered as possible candidates for experimentation,
such as activation functions, optimizers, and loss functions. However early re-
sults clearly showed that relu (Rectified Linear Unit, or Rectifier) and rmsprop,
respectively, which were often used in published CNN architectures, yielded the
best results. Relu is the most popular activation function for deep neural net-
works, because it is considered to be a good representation of the biological
process it approximates. Rmsprop is one of many optimization algorithms used
in neural networks to reduce the error with respect to weights. It has the advan-
tage of working well with smaller batches of training data. It is nonlinear, which
is crucial as the neural network is attempting to learn linear non-separable data,
but presumably data in which some sort of pattern(s) do occur. Links to further
information about activation functions and optimizers are included at the end
of this paper.

hit www.oreillynet.com/xml/blog/2006/06/why_the_world_is_ready_for_the.html 4,52

miss www.npr.org/2012/03/26/149404846/the-birth-of-silicon-valley 4,10,12

Table 5: Examples of URLs that would be labeled as true and falses when archive id
52 is specified

A problem not apparent in ROC curves is overfitting on training data. Over-
fitting occurs when the network does too good of modeling the training data. A
plot of the training history will often reveal overfitting as a steady or dramatic
divergence between training accuracy and validation data accuracy. It will also
manifest as poorer performance of the model on random input data as compared
to reported accuracy at training time. It turns out that larger batch sizes can
help mitigate overfitting with this data set:

The hyperparameter search generated a large amount of data. The max-
imum number of permutations of parameters results in 84 sets of results per
archive. Despite efforts to limit the sample size, execution times on a general
purpose computing platform were prohibitive, with execution taking many hours

12

www.oreillynet.com/xml/blog/2006/06/why_the_world_is_ready_for_the.html
www.npr.org/2012/03/26/149404846/the-birth-of-silicon-valley

Archive id Archive Name Number of occurrences

4 ia 175149
7 pt 25292
8 uknationalarchives 3186
10 archiveit 34189
12 archive.is 84125
15 loc 24762
16 swa 4966
19 proni 1199
51 ukparliament 5579
52 ba 41349
71 yorku 509
82 nli 6434
86 perma 1353
110 bsb 458

Table 6: archives together with number of occurrences in log file

and sometimes days (on a quad-processor Mac Pro with 8Gb RAM and 1Tb
SSD storage). ISR-3 transferred a GPU processor (Nvidia Quadro K2200) to
the library for neural network projects. When this system was used, processing
times were reduced by at least one order of magnitude. However, in contrast
to the desktop system, which had access to most of the system RAM, the GPU
unit can only utilize its onboard RAM which was 4Gb. This resulted in the exe-
cution ending prematurely with a ”resources exhausted” message. So additional
trial and error was required to identify the maximum sample size and network
layer size that the system could handle. Because of this, the GPU system proved
not to be as useful for searching the hyperparameter space, or for running tests
with very large batch or sample sizes, or with deeper networks. This was espe-
cially problematic with convolutional neural network architectures because they
consume more resources than simpler architectures. There are higher perfor-
mance GPU services available elsewhere at LANL and from cloud services such
as Amazon EC2 Elastic GPUs.

Neural networks tend to require long periods of time to run to completion.
This is why it is so common to use GPU systems to execute neural networks
with large labeled and unlabeled training datasets. Because of the limitations of
the GPU system provided by ISR-3, and also due to variations in the maximum
number of samples per archive in the provided aggregator cache log file, many
of the results reported in the following section are based on relatively small
numbers of samples. Most tests were run with less than 10,000 training samples
per archive. There are only a few examples that illustrate the effects of larger
sample sizes and/or large batch sizes.

13

Table 7: Char-CNN with batch size of 32, compared to batch size of 1000.

14

Convert log data to binary labeled training data set Visualize labeled training data with t-SNE

Train MLP-B network for 100 epochs Review training history

Rerun MLP-B for 20 epochs Compare loss trend plot with training plot

Review ROC Tests of the predictive accuracy of this model

Table 8: Visual summary of NN processing pipeline for Memento aggregator log data
15

Results

Results include evaluation of various models against archive-specific training
data, tests of various architectures and varying sample sizes. Table 7 (above)
illustrates another result: a processing pipeline for applying neural networks
to log files that contain URLs, when the goal of classification is to predict
binary labels for that data. Other results show how optimal architectures were
identified for more exhaustive testing. For example, among MLP models tested,
MLP-B produced good models and with larger batch sizes (up to 50% of sample
size), and little evidence for overfitting in the training history. So of the Char-
MLP architectures, only Char-MLP B was used for the remainder of the tests.
However, since not only the number of layers but also the type of layers as
well varied among the Char-CNN architectures, all six were tested. A set of
ROC curves illustrate the best results (largest area under curve) produced by
a Char-CNN architecture compared with the best results from the Char-MLP
for samples from the same archive. As expected, Char-CNNs yielded better
results but executed more slowly, particularly if the network had many layers.
Char-MLP execution time was much faster, but the results were not as good.
Most hyperparameters were fixed for all runs, except where noted. The results
of hyperparameter searches, which affected these values, appear in Appendix 4.

Character Convolutional Neural Network configurations used

A B C D E

8 weight layers 8 weight layers 11 weight layers 8 weight layers 6 weight layers

input true and false url set x character dictionary

Conv1-64 Conv1-24 Conv1-24 Conv1-256 Conv1-100

Conv1-64 Conv1-24 Conv1-24 Conv1-128 MaxPooling

Maxpooling MaxPooling Conv1-24 MaxPooling Conv1-50

Conv1-128 Conv1-48 Conv1-24 Conv1-64 Dropout .5

Conv1-128 Conv1D-48 MaxPooling Conv1-64 GlobalAveragePooling

GlobalAveragePooling GlobalAveragePooling GlobalAveragePooling GlobalAveragePooling Dense

Dropout .5 Dropout .5 Conv1-24 Dropout .5

Dense Dense Dropout .5 Dense

Conv1-24

GlobalAveragePooling

Dense

Table 9: A key to the various CNN architectures that were tested, Architecture A is
identical to that used for spam classification

Char-MLP Neural Networks
A B C

Dense (256 nodes) Dense (256 nodes) Dense (256 nodes)

Dense (256 nodes) Dense (256 nodes) Dense (128 nodes)

Dense (128 nodes) Dense (128 nodes) Dense (1-sigmoid)

Dense (128 nodes) Dense (1-sigmoid)

Dense (1-sigmoid)

Table 10: Architecture of MLP networks that were evaluated

16

archive.is(12) swa (16)

Table 11: Char-MLP training history for A,B,C with 6000 samples and a 70/30 split.
When the lines remain close or converge, the learning and predictive performance of
the model will be better.

17

Table 12: Best results, MLP-B, and CNN curves: 20 epochs, batch size 32, 6000
samples

18

Table 13: Best results, MLP-B and CNN, continued

19

Network Architecture GPU Run time Mac Pro Run time

Char-CNN A 24.25 166.42

Char-CNN B 17.1 93.47

Char-CNN C 18.56 287.01

Char-CNN D 56.17 469.2

Char-CNN E 29.54 204.45

Stacked Char-CNN C 21.94 289.65

Char-MLP A 20.25 27.62

Char-MLP B 17.4 25.11

Char-MLP C 15.55 21.19

Table 14: Performance of various character neural network architectures, 2000 sam-
ples from archive id 7, 10 epochs, GPU and Mac Pro run times in seconds

A B C D E Stacked C

pt (7) 70.3 67.85 68.05 68.55 66.5 65.95

uknationalarchives (8) 73.65 72.7 71.45 71.6 69.4 70.75

archiveit (10) 65.15 67.8 66.85 66.8 70.4 65.25

archive.is (12) 62.3 60.55 61.75 64.15 60.7 60.75

loc (15) 68.85 69.3 67.0 71.25 66.6 68.5

swa (16) 74.2 76.55 77.9 74.35 76.5 72.95

proni (19) 77.9 79.35 79.2 78.4 80.0 79.6

ukparliament (51) 74.95 80.2 76.3 80.3 79.45 75.05

ba (52) 69.9 69.45 69.35 70.0 71.05 67.5

nli (82) 76.85 79.9 77.4 75.8 78.85 79.95

perma (86) 71.1 71.0 67.25 72.6 67.7 68.4

Table 15: Test results by archive id for six Char-CNN network architectures, 2000
samples, accuracy value is average of 10 executions

A B C D E Stacked C

pt (7) 67.7 67.93 70.95 68.73 70.73 68.08

uknationalarchives (8) 76.13 79.13 78.93 79.58 76.0 71.28

archiveit (10) 68.08 69.05 69.53 71.15 70.13 64.98

archive.is (12) 65.68 66.23 65.63 64.4 65.25 63.0

loc (15) 69.93 70.7 69.7 72.35 69.38 66.9

swa (16) 79.22 79.23 76.3 80.38 77.9 74.75

ukparliament (51) 81.6 82.23 80.4 79.33 80.25 79.68

ba (52) 70.43 71.38 70.15 71.68 70.65 70.4

nli (82) 78.95 79.13 78.93 79.58 79.7 78.7

Table 16: Test results by archive id for six Char-CNN network architectures, 4000
samples, accuracy is average of 10 executions

20

A B C D E Stacked C

pt (7) 70.62 70.57 69.4 72.03 68.57 68.05

uknationalarchives (8) 76.7 76.27 79.6 77.08 79.4 73.75

archiveit (10) 70.92 71.28 71.92 72.9 70.42 65.85

archive.is (12) 67.38 67.17 66.82 66.5 66.55 64.48

loc (15) 71.87 71.07 72.03 72.98 71.05 67.03

swa (16) 80.72 79.73 78.97 80.63 79.27 77.63

ukparliament (51) 81.33 81.67 81.87 82.25 80.3 80.65

ba (52) 72.82 72.3 70.95 72.93 72.22 70.65

nli (82) 80.32 80.33 79.6 81.37 79.4 77.58

Table 17: Test results by archive id for six Char-CNN network architectures, 6000
samples, accuracy is average of 10 executions

A B C D E Stacked C

pt (7) 71.64 70.71 69.28 70.32 71.06 68.01

uknationalarchives (8) 80.48 79.21 81.37 80.9 79.76 78.98

archiveit (10) 72.3 72.09 72.02 70.59 71.11 67.93

archive.is (12) 67.02 67.82 65.46 66.55 67.64 64.4

loc (15) 70.7 71.87 72.87 70.73 72.52 70.07

swa (16) 78.77 79.94 79.97 80.0 78.69 76.66

ukparliament (51) 82.11 81.36 82.22 81.51 79.47 80.35

ba (52) 72.53 73.23 73.27 73.94 71.34 71.79

nli (82) 80.48 79.21 81.37 80.9 79.76 78.98

Table 18: Test results by archive id for six Char-CNN network architectures, 10,000
samples, accuracy is average of 10 executions

2000 4000 6000 10,000

pt (7) 64.95 68.7 67.98 68.92

uknationalarchives (8) 69.7 69.98 69.88 72.25

archiveit (10) 66.9 67.63 67.37 69.13

archive.is (12) 57.95 58.45 59.2 59.52

loc (15) 67.9 68.43 68.93 69.47

swa (16) 76.35 75.93 75.97 77.01

ukparliament (51) 79.9 78.85 78.87 79.38

ba (52) 62.6 65.63 65.55 66.35

nli (82) 80.5 78.83 78.92 78.79

Table 19: MLP test results by archive id 2000, 4000, 6000, and 10,000 samples

21

Evaluation

It should also be noted that the test data contained a large amount of variation
in terms of number of URLs per archive ranging from a few hundred, to tens
of thousands. Results for archives with smaller samples should be considered
suspect, even though the true/false positive results were in line with those re-
ported for other archives when the accuracy score was also similar. However, as
table 17 illustrates, trends found in smaller samples tend to hold true in larger
samples. These scatter plots represent projections of the URL-character matri-
ces to a lower dimensional plot. Hits and misses for archive.is (id 12) appear
to be distributed randomly, while there are readily discernible groupings of hits
verses misses for ukparliament (id 51). This is no doubt why both Char-CNN
and Char-MLP networks performed better learning over ukparliament data than
archive.is data.

Models can be saved for re-use, including classification of previously unseen
URLs. This functionality has been tested in a limited fashion. Starting with the
3000 sample Char-CNN network runs, the best model per cache id and network
architecture, as determined by the Keras accuracy score using validation data,
is saved for future testing and re-use. It would be helpful to have a discussion
about how to test and evaluate saved models. On a Mac Pro, a model trained
with Char-CNN B and 12,000 samples (6000 hits, 6000 misses) from archive.is
was able to classify 50 randomly selected URLs in .997 seconds, 100 URLs in
1.769 seconds, and 200 URLs in 3.304 seconds. Based on this small test, it
appears that this predictive model scales linearly.

Figure 4: Char-CNN B model performance classifying 50 - 1000 random URLs

More data would be helpful, if these results merit the effort of extracting
additional data. It is by no means certain that the architectures and hyperpa-
rameters that were tested were necessarily the best choices, even though every

22

effort was made to evaluate options methodically. There may be other network
architectures that may also yield good results, such as character recurrent net-
work models such as Long Short Term Memory (LSTM) networks, which were
not tested. Feature engineering might also improve results. URLs could be
tokenized into words from which it might be useful to generate distributional
co-occurrence vectors using Glove or Word2Vec. Again, whether or not addi-
tional work is appropriate depends on how these results compare with previous
applications of machine learning to this problem.

23

References

• Leverington, David. A Basic Introduction to Feedforward Backpropagation
Neural Networks http://www.webpages.ttu.edu/dleverin/neural_network/

neural_networks.html

• Jacobson, Lee. Introduction to Artificial Neural Networks http://www.theprojectspot.
com/tutorial-post/introduction-to-artificial-neural-networks-part-1/

7

• Trask, Andrew. A Neural Network in 11 lines of Python https://iamtrask.

github.io/2015/07/12/basic-python-network/

• Yadav, Vivek. How neural networks learn nonlinear functions and classify lin-
early non-separable data https://medium.com/@vivek.yadav/how-neural-networks-learn-nonlinear-functions-and-classify-linearly-non-separable-data-22328e7e5be1

• Deshpande, Adit. A Beginners Guide to Understanding Convolutional Neural
Networks https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner’
s-Guide-To-Understanding-Convolutional-Neural-Networks/

• Sharma, Avinash. Understanding Activation Functions in Neural Networks
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0

• Comprehensive list of activation functions in neural networks with pros/cons
https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons

• Deshpande, Adit. The 9 Deep Learning Papers You Need to Know About
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.

html

• Getting started with the Keras Sequential model https://keras.io/getting-started/
sequential-model-guide/

• Brownlee, Jason. Rescaling Data for Maching Learning in Python with SciKit-
Learn https://machinelearningmastery.com/rescaling-data-for-machine-learning-in-python-with-scikit-learn/

• HTTP Framework for Time-Based Access to Resource States Memento https:

//tools.ietf.org/html/rfc7089

• Bornand, Nicolas J., Balakivera, L, Van de Sompel, H. Routing Memento Re-
quests Using Binary Classifiers http://delivery.acm.org/10.1145/2920000/

2910899/p63-bornand.pdf

• Watch Tiny Neural Nets Learn http://swanintelligence.com/watch-tiny-neural-nets-learn.

html

• van de Maaten, Laurens. t-SNE https://lvdmaaten.github.io/tsne/

• An Illustrated Introduction to the t-SNE algorithm https://github.com/oreillymedia/

t-SNE-tutorial

• GloVe: Global Vectors for Word Representation https://nlp.stanford.edu/

projects/glove/

24

http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html
http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html
http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7
http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7
http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7
https://iamtrask.github.io/2015/07/12/basic-python-network/
https://iamtrask.github.io/2015/07/12/basic-python-network/
https://medium.com/@vivek.yadav/how-neural-networks-learn-nonlinear-functions-and-classify-linearly-non-separable-data-22328e7e5be1
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
https://keras.io/getting-started/sequential-model-guide/
https://keras.io/getting-started/sequential-model-guide/
https://machinelearningmastery.com/rescaling-data-for-machine-learning-in-python-with-scikit-learn/
https://tools.ietf.org/html/rfc7089
https://tools.ietf.org/html/rfc7089
http://delivery.acm.org/10.1145/2920000/2910899/p63-bornand.pdf
http://delivery.acm.org/10.1145/2920000/2910899/p63-bornand.pdf
http://swanintelligence.com/watch-tiny-neural-nets-learn.html
http://swanintelligence.com/watch-tiny-neural-nets-learn.html
https://lvdmaaten.github.io/tsne/
https://github.com/oreillymedia/t-SNE-tutorial
https://github.com/oreillymedia/t-SNE-tutorial
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

Appendix 1: Effects of more data on Char-MLP
performance

Training Loss

Table 20: Char-MLP: longer training (300 epochs) and progressively more samples
(15000, 18000, 25000) training and loss.

25

Appendix 2: Char-MLP runs that aim for opti-
mal training results

Training ROC

Table 21: Char-MLP B: smaller sample sets, fewer epochs, and larger batch size
(50%) of sample size

26

Appendix 3: Char-CNN runs for all architectures

ROC Training (best)

Table 22: Char-CNNs: 6000 samples, 20 epochs, batch size 1000

27

ROC Training (best)

Table 23: Char-CNNs, continued

28

Appendix 4: Hyperparameter searching

Results Network Parameters

Archive ID Accuracy Correct False Positive Precision Recall Batch size Epochs Kernel size

7 (High) 70.7 141 22 .683 .777 20 10 4
7 (Low) 64.9 129 22 .643 .775 128 5 3

7 (Average) 68.74 137.02 23.38 .671 .762 N/A N/A N/A

8 (High) 75.1 150 18 .722 .833 48 5 3
8 (Low) 67.6 135 18 .665 .812 128 5 4

8 (Average) 72.46 144.6 18.53 .706 .809 N/A N/A N/A

10 (High) 70.45 140 29 0.715 .702 4 10 3
10 (Low) 63.9 127 25 .651 .741 64 5 4

10 (Average) 67.92 135.31 25.61 .676 .739 N/A N/A N/A

12 (High) 65.35 130 30 .647 .695 20 15 3
12 (Low) 55.6 111 42 .498 .58 128 5 4

12 (Average) 61.77 123.17 34.71 .62 .648 N/A N/A N/A

15 (High) 71.9 143 23 .706 .766 36 10 4
15 (Low) 62.6 125 29 .623 .708 116 10 3

15 (Average) 67.96 135.53 24.625 .67 .749 N/A N/A N/A

52 (High) 73.65 147 20 .719 .792 36 15 3
52 (Low) 66.25 132 26 .667 .731 128 5 4

52 (Average) 70.89 141.41 20.63 .688 .789 N/A N/A N/A

Table 24: Results for Char-CNN A executions using 2000 log entry samples per
archive, with hyperparameters

Results Network Parameters
Archive ID Accuracy Correct False Positive Precision Recall Batch size Epochs Kernel size
7 (High) 71.88 431 85 .728 .714 20 10 3
7 (Low) 69.78 418 47 .657 .843 80 5 4

7 (Average) 70.45 422.45 70.27 .696 .764 N/A N/A N/A
8 (High) 78.01 468 43 .745 .855 32 5 3
8 (Low) 72.93 437 71 .65 .76 4 10 3

8 (Average) 76.7 459.81 51 .735 .828 N/A N/A N/A
10 (High) 73.36 440 66 .719 .777 32 5 4
10 (Low) 68.78 412 81 .706 .728 4 10 3

10 (Average) 71.69 429.6 73.7 .714 .752 N/A N/A N/A
12 (High) 68.06 408 81 .667 .728 20 10 3
12 (Low) 66.81 400 73 .65 .756 80 5 4

12 (Average) 66.66 399.54 85.63 .657 .712 N/A N/A N/A
15 (High) 72.63 435 78 .723 .737 20 10 3
15 (Low) 68.46 410 92 .727 .69 4 10 3

15 (Average) 71.08 425.9 64.7 .698 .782 N/A N/A N/A
16 (High) 80.85 485 40 .779 .864 32 5 4
16 (Low) 77.8 466 45 .756 .849 64 5 4

16 (Average) 78.79 472.3 46.4 .767 .843 N/A N/A N/A
51 (High) 83.06 498 35 .802 .88 32 5 3
51 (Low) 76.05 456 36 .745 .878 4 10 3

51 (Average) 81.07 486.09 35.9 .781 .878 N/A N/A N/A
52 (High) 73.16 439 63 .711 .789 32 5 3
52 (Low) 68.9 413 96 .734 .677 48 5 3

52 (Average) 71.34 427.72 59.27 .694 .801 N/A N/A N/A
82 (High) 80.96 485 51 .8 .827 20 10 3
82 (Low) 77.7 466 36 .747 .878 64 5 4

82 (Average) 79.76 478.09 41.72 .772 .859 N/A N/A N/A

Table 25: Results for Char-CNN A executions using 6000 log entry samples per
archive, with hyperparameters

29

Results Network Parameters

Archive ID Training Set Validation set Accuracy Correct False Positive Precision Recall Batch size Epochs Kernel size

71 (High) 1000 100 83.2 83 4 0.794 .904 112 5 4
71 (Low) 1000 100 78.5 78 6 0.756 .896 64 5 4

71 (Average) 1000 100 81.537 81.094 4.735 .778 .896 N/A N/A N/A
19 (High) 2200 220 83.2 183 15 0.817 0.863 4 10 3
19 (Low) 2200 220 79.0 173 12 .751 .89 48 5 4

19 (Average) 2200 220 80.8 177.4 14 0.784 0.868 N/A N/A N/A
110 (High) 11000 1100 82.9 912 65 0.799 0.881 32 5 4
110 (Low) 11000 1100 80.6 886 59 0.766 0.892 96 5 3

110 (Average) 11000 1100 81.9 900.7 64.9 0.786 0.881 N/A N/A N/A
51 (High) 11000 1100 82.9 912 65 0.799 0.881 32 5 4
51 (Low) 11000 1100 77.8 856 48 0.736 0.911 4 10 3

51 (Average) 11000 1100 81.6 897.8 63.8 0.783 0.883 N/A N/A N/A

8 (High) 638 0.786 500 50 0.757 0.842 128 30 3
8 (Low) 638 0.742 474 63 0.77 0.692 128 30 3

8 (Average) 638 0.768 489.6 63 0.752 0.802 N/A N/A N/A
82 (High) 1286 0.829 1068 104 0.823 0.838 128 30 3
82 (Low) 1286 0.8 1029 186 0.865 0.71 128 30 3

82 (Average) 1286 0.813 1046.3 92.9 0.792 0.855 N/A N/A N/A
86 (High) 270 0.729 197 39 0.738 0.711 128 30 3
86 (Low) 270 0.511 139 132 0.8 0.029 128 30 3

86 (Average) 270 0.653 176.7 50.3 0.718 0.628 N/A N/A N/A
15 (High) 24000 2400 0.757 1817 231 0.733 0.807 32 5 3
15 (Low) 24000 2400 0.718 1725 160 0.668 0.866 32 5 3

15 (Average) 24000 2400 0.742 1782 268 0.733 0.776 N/A N/A N/A
16 (High) 9800 980 81.1 795 77 0.797 0.842 48 5 4
16 (Low) 9800 980 80.5 789 54 0.765 0.889 48 5 4

16 (Average) 9800 980 80.9 792.66 67.33 0.783 0.862 N/A N/A N/A
7 (High) 20000 2000 73.7 1475 219 0.723 0.780 32 5 4
7 (Low) 20000 2000 72.8 1456 236 0.724 0.763 32 5 3

7 (Average) 20000 2000 73.2 1465.5 227.5 0.723 0.772 N/A N/A N/A
12 (High) 24000 2400 0.720 1730 313 0.713 0.739 32 5 3
12 (Low) 24000 2400 0.673 1616 160 0.625 0.866 32 5 3

12 (Average) 24000 2400 0.698 1677 359 0.711 0.700 N/A N/A N/A
10 (High) 20000 2000 0.7358 1471 306 0.761 0.693 32 5 3
10 (Low) 20000 2000 0.7355 1470 248 0.734 0.7511 32 5 4

10 (Average) 20000 2000 .735 1470.5 277 0.747 0.722 N/A N/A N/A

Table 26: Results for Char-CNN A executions using as many samples as possible per
archive, with hyperparameters

30

Results Network Parameters

Archive ID Accuracy Correct False Positive Precision Recall Batch size Epochs Kernel size

7 (High) 71.73 430 65 .695 .782 32 5 3
7 (Low) 67.96 407 54 .651 .819 128 5 3

7 (Average) 69.97 419.46 65.38 .681 .78 N/A N/A N/A

8 (High) 77.45 464 54 .752 .82 32 5 3
8 (Low) 74.26 445 48 .714 .838 128 5 3

8 (Average) 75.93 455.23 55.85 .739 .812 N/A N/A N/A

10 (High) 72.46 434 83 .733 .72 32 5 3
10 (Low) 66.88 401 118 .73 .605 128 5 3

10 (Average) 70.06 419.92 79.85 .707 .732 N/A N/A N/A

12 (High) 68.21 409 81 .669 .728 36 10 4
12 (Low) 62.43 374 94 .661 .685 96 5 4

12 (Average) 66.17 396.7 94.25 .671 .684 N/A N/A N/A

15 (High) 72.75 436 74 .721 .751 32 5 3
15 (Low) 68.81 412 32 .64 .892 96 5 4

15 (Average) 71.36 427.83 60.58 .692 .796 N/A N/A N/A

16 (High) 79.71 478 41 .766 .861 32 5 3
16 (Low) 77.3 463 37 .734 .873 112 5 4

16 (Average) 78.66 471.46 42.08 .756 .858 N/A N/A N/A

51 (High) 81.73 490 33 .779 .888 32 5 4
51 (Low) 79.21 475 38 .761 .871 96 5 3

51 (Average) 80.7 483.69 37.92 .775 .872 N/A N/A N/A

52 (High) 73.05 438 50 .694 .83 32 5 3
52 (Low) 70.55 423 45 .667 .848 128 5 3

52 (Average) 71.72 430.07 51.46 .683 .827 N/A N/A N/A

82 (High) 80.83 485 37 .772 .875 80 5 4
82 (Low) 77.2 463 31 .732 .893 112 5 4

82 (Average) 79.71 477.84 38.15 .763 .871 N/A N/A N/A

Table 27: Results for Char-CNN B executions using 6000 log entry samples per
archive, with hyperparameters

Results Network Parameters

Archive ID Accuracy Correct False Positive Precision Recall Batch size Epochs Kernel size

7 (High) 70.36 422 77 .692 .743 48 5 4
7 (Low) 66.53 399 64 .656 .784 96 5 3

7 (Average) 68.63 411.38 67.85 .671 .772 N/A N/A N/A

8 (High) 76.58 459 42 .725 .858 32 5 3
8 (Low) 71.26 427 47 .691 .841 128 5 3

8 (Average) 74.75 448.07 55.77 .725 .812 N/A N/A N/A

10 (High) 71.16 427 83 .713 .721 80 5 4
10 (Low) 66.5 399 47 .632 .841 64 5 3

10 (Average) 68.75 412.16 71.75 .68 .759 N/A N/A N/A

12 (High) 65.75 394 78 .638 .739 32 5 3
12 (Low) 60.88 365 89 .614 .702 112 5 3

12 (Average) 63.2 378.76 97.54 .643 .672 N/A N/A N/A

15 (High) 72 432 75 .711 .747 48 5 4
15 (Low) 69.38 416 78 .692 .74 112 5 4

15 (Average) 70.63 423.53 67.31 .69 .774 N/A N/A N/A

16 (High) 78.53 471 51 .766 .829 32 5 3
16 (Low) 75.08 450 58 .743 .806 96 5 4

16 (Average) 76.7 459.75 48.58 .743 .836 N/A N/A N/A

51 (High) 82.18 493 34 .785 .886 32 5 3
51 (Low) 79.23 475 47 .773 .843 112 5 4

51 (Average) 80.9 485 35.69 .775 .879 N/A N/A N/A

52 (High) 72.16 433 56 .693 .812 32 5 4
52 (Low) 66.25 397 105 .685 .649 128 5 3

52 (Average) 71.06 425.92 60.23 .686 .797 N/A N/A N/A

82 (High) 79.76 478 39 .763 .867 32 5 3
82 (Low) 76.43 458 33 .725 .888 48 5 3

82 (Average) 77.75 465.92 41.62 .746 .859 N/A N/A N/A

Table 28: Results for Char-CNN C executions using 6000 log entry samples per
archive, with hyperparameters

31

